

2019 Mathematics

Advanced Higher

Finalised Marking Instructions

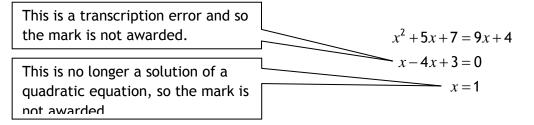
© Scottish Qualifications Authority 2019

These marking instructions have been prepared by examination teams for use by SQA appointed markers when marking external course assessments.

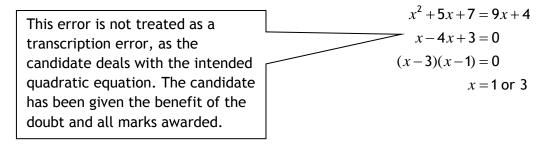
The information in this document may be reproduced in support of SQA qualifications only on a noncommercial basis. If it is reproduced, SQA must be clearly acknowledged as the source. If it is to be reproduced for any other purpose, written permission must be obtained from <u>permissions@sqa.org.uk</u>.

General marking principles for Advanced Higher Mathematics

Always apply these general principles. Use them in conjunction with the detailed marking instructions, which identify the key features required in candidates' responses.


For each question, the marking instructions are generally in two sections:

- generic scheme this indicates why each mark is awarded
- illustrative scheme this covers methods which are commonly seen throughout the marking


In general, you should use the illustrative scheme. Only use the generic scheme where a candidate has used a method not covered in the illustrative scheme.

- (a) Always use positive marking. This means candidates accumulate marks for the demonstration of relevant skills, knowledge and understanding; marks are not deducted for errors or omissions.
- (b) If you are uncertain how to assess a specific candidate response because it is not covered by the general marking principles or the detailed marking instructions, you must seek guidance from your team leader.
- (c) One mark is available for each •. There are no half marks.
- (d) If a candidate's response contains an error, all working subsequent to this error must still be marked. Only award marks if the level of difficulty in their working is similar to the level of difficulty in the illustrative scheme.
- (e) Only award full marks where the solution contains appropriate working. A correct answer with no working receives no mark, unless specifically mentioned in the marking instructions.
- (f) Candidates may use any mathematically correct method to answer questions, except in cases where a particular method is specified or excluded.
- (g) If an error is trivial, casual or insignificant, for example 6 x 6 = 12, candidates lose the opportunity to gain a mark, except for instances such as the second example in point (h) overleaf.

(h) If a candidate makes a transcription error (question paper to script or within script), they lose the opportunity to gain the next process mark, for example

The following example is an exception to the above

(i) Horizontal/vertical marking

If a question results in two pairs of solutions, apply the following technique, but only if indicated in the detailed marking instructions for the question.

Example:

You must choose whichever method benefits the candidate, not a combination of both.

- (j) In final answers, candidates should simplify numerical values as far as possible unless specifically mentioned in the detailed marking instruction. For example
 - $\frac{15}{12}$ must be simplified to $\frac{5}{4}$ or $1\frac{1}{4}$ $\frac{43}{1}$ must be simplified to 43 $\frac{15}{0\cdot 3}$ must be simplified to 50 $\frac{\frac{4}{5}}{3}$ must be simplified to $\frac{4}{15}$ $\sqrt{64}$ must be simplified to 8*

*The square root of perfect squares up to and including 100 must be known.

- (k) Commonly Observed Responses (COR) are shown in the marking instructions to help mark common and/or non-routine solutions. CORs may also be used as a guide when marking similar non-routine candidate responses.
- (I) Do not penalise candidates for any of the following, unless specifically mentioned in the detailed marking instructions:
 - working subsequent to a correct answer
 - correct working in the wrong part of a question
 - legitimate variations in numerical answers/algebraic expressions, for example angles in degrees rounded to nearest degree
 - omission of units
 - bad form (bad form only becomes bad form if subsequent working is correct), for example

 $(x^{3} + 2x^{2} + 3x + 2)(2x + 1)$ written as $(x^{3} + 2x^{2} + 3x + 2) \times 2x + 1$ $= 2x^{4} + 5x^{3} + 8x^{2} + 7x + 2$ gains full credit

• repeated error within a guestion, but not between guestions or papers

- (m) In any 'Show that...' question, where candidates have to arrive at a required result, the last mark is not awarded as a follow-through from a previous error, unless specified in the detailed marking instructions.
- (n) You must check all working carefully, even where a fundamental misunderstanding is apparent early in a candidate's response. You may still be able to award marks later in the question so you must refer continually to the marking instructions. The appearance of the correct answer does not necessarily indicate that you can award all the available marks to a candidate.
- (o) You should mark legible scored-out working that has not been replaced. However, if the scored-out working has been replaced, you must only mark the replacement working.
- (p) If candidates make multiple attempts using the same strategy and do not identify their final answer, mark all attempts and award the lowest mark. If candidates try different valid strategies, apply the above rule to attempts within each strategy and then award the highest mark.

Strategy 1 attempt 1 is worth 3 marks.	Strategy 2 attempt 1 is worth 1 mark.
Strategy 1 attempt 2 is worth 4 marks.	Strategy 2 attempt 2 is worth 5 marks.
From the attempts using strategy 1, the resultant mark would be 3.	From the attempts using strategy 2, the resultant mark would be 1.

For example:

In this case, award 3 marks.

Marking instructions for each question

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
1.	(a)		• ¹ evidence of product rule with one term correct ^{1,4}	• ¹ $6x^5 \cot 5x \pm x^6 ()$ OR $-5x^6 \csc^2 5x + () \cot 5x$	2
			• ² complete differentiation ^{1,2,3}	• ² $6x^5 \cot 5x - 5x^6 \operatorname{cosec}^2 5x$	
Note 1. F		didate	es who produce a single term only, $ullet^1$ and	d ∙² are not available.	
2. A	ward	² for	final answers such as: $6x^5 \cot 5x + x^6 (-5)$	$\csc^2 5x$, $6x^5 \cot 5x - x^6 5 \csc^2 5x$ and	nd
6	$\int x^5 \cot x$	5x - 5	$\operatorname{cosec}^2 5x.x^6$.		
			• ² for final answers such as: $6x^5 \cot 5x + x - 5 \operatorname{cosec}^2 5x x^6$.	$-5x^6 \operatorname{cosec}^2 5x$, $6x^5 \cot 5x + x^6 - 5\cos 6x^6$	$ec^2 5x$
4. V	here a	a canc	lidate equates $f(x)$ to $f'(x)$, \bullet^1 is not	available (see COR A.)	
Com	monly	v Obse	rved Responses:		
A. j	f(x) =	$x^6 \cot$	5 <i>x</i>		
			$\operatorname{bt} 5x - 5x^6 \operatorname{cosec}^2 5x$	Award \bullet^2 only	
В. х	$c^6 \cot 5$	$x = x^6$	$\tan^{-1}(5x)$		
j	f'(x) =	= 6 x ⁵ ta	$an^{-1}(5x) + \frac{5x^6}{1 + (5x)^2}$	Award • ² only	
C.)	f(x) =	$\frac{x^6}{\tan 5x}$	- ¢		
J	f'(x) =	$=\frac{6x^5 \mathrm{t}}{6x^5 \mathrm{t}}$	$\frac{\tan 5x - 5x^6 \sec^2 5x}{\left(\tan 5x\right)^2}$	Award \bullet^1 and \bullet^2	
D. j	f(x) =	x^{6} (ta	$(n 5x)^{-1}$		
			$(\tan 5x)^{-1} - x^6 (\tan 5x)^{-2} 5 \sec^2 5x$	Award \bullet^1 and \bullet^2	

Q	uestic	n	Generic scheme	Illustrative scheme	Max mark
1.	(b)		• ³ evidence use of quotient rule with denominator and one term of numerator correct	• ³ $\frac{6x^{2}(x^{3}-4)}{(x^{3}-4)^{2}}$ OR $\frac{(2x^{3}+1)(3x^{2})}{(x^{3}-4)^{2}}$	3
			• ⁴ complete differentiation	• ⁴ $\frac{6x^2(x^3-4)-(2x^3+1)(3x^2)}{(x^3-4)^2}$	
			• ⁵ simplify ^{1,2}	• ⁵ $\frac{-27x^2}{(x^3-4)^2}$	

Notes:

- 1. •⁵ is available only where candidates have multiplied out brackets and collected like terms in the numerator.
- 2. •⁵ is not available where a candidate produces further incorrect simplification subsequent to a correct answer.

Commonly Observed Responses:

A. Candidates who rewrite function as
$$y = 2 + \frac{9}{x^3 - 4}$$
:

•³
$$y = 2 + 9(x^3 - 4)^{-1}$$
 stated (or implied at •⁴)
•⁴ $-9(x^3 - 4)^{-2} \dots$
•⁵ $-27x^2(x^3 - 4)^{-2}$

B. Candidates who use product rule:

•³
$$6x^{2}(x^{3}-4)^{-1}+(2x^{3}+1)...$$
 or $...(x^{3}-4)^{-1}-3x^{2}(2x^{3}+1)(x^{3}-4)^{-2}$
•⁴ $6x^{2}(x^{3}-4)^{-1}-3x^{2}(2x^{3}+1)(x^{3}-4)^{-2}$
•⁵ $-27x^{2}(x^{3}-4)^{-2}$

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
1.	(c)		• ⁶ start differentiation ¹	• ⁶ $\frac{-1}{\sqrt{1-(2x)^2}}$	3
			• ⁷ complete differentiation ¹	• ⁷ $\frac{-1}{\sqrt{1-(2x)^2}} \times 2$ • ⁸ -4	
			• ⁸ evaluate ^{2,3}	• ⁸ -4	
Note	s:				
1. At	t ● ⁶ do	not a	accept $\frac{-1}{\sqrt{1-2x^2}}$ unless either $\frac{\dots}{\sqrt{1-(2x)^2}}$	or $\frac{1}{\sqrt{1-4x^2}}$ appears at \bullet^7 .	
2. • ⁸	is ava	ailable	e only where a candidate's answer is co	nsistent with their stated derivative.	
3. W	3. Where a candidate produces an incorrect, rounded answer; at least 2 significant figures are				
re	required for the award of \bullet^8 .				
Com	monly	0bse	erved Responses:		

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark	
2.	(a)		• ¹ begin process ¹	• $\left \begin{array}{ccc} e^{1} & eg & 2 \\ -2 & 5 \\ \end{array} \right -1 \left \begin{array}{ccc} -3 & 2 \\ -1 & 5 \\ \end{array} \right +4 \left \begin{array}{ccc} -3 & p \\ -1 & -2 \\ \end{array} \right $	3	
			• ² find determinant ^{1,2}	• ² 14 <i>p</i> +45		
			$ullet$ and find p^{-1}	• ³ -3		
Note	s:	•				
1. W	here a	a canc	didate interchanges any 2 rows, •1 is av	ailable only where the determinant is e	quated	
to	o −3.	• ² and	$ \bullet^3$ are still available.			
2. At	•² ac	cept	2(5p+4)-1(-13)+4(6+p).			
Com	monly	/ Obse	erved Responses:			
	(b)		• ⁴ any two simplified entries ^{1,2}	<i>(q</i> +16 5)	2	
			• ⁵ complete multiplication 2	• ^{4, 5} $\begin{pmatrix} q+16 & 5 \\ -3q+8 & -12 \\ -2q+20 & -7 \end{pmatrix}$		
Note	s:					
			f the resultant matrix is not $3{ imes}2$ awar			
	(a+16 5)					
2. Fo	2. For the award of \bullet^4 and \bullet^5 , accept $\begin{pmatrix} q+16 & 5\\ pq+8 & -3+3p\\ -2q+20 & -7 \end{pmatrix}$.					
Com	monly	/ Obse	erved Responses:			

(Questio	on	Generic scheme	Illustrative scheme	Max mark
2.	(c)		• ⁶ explain ^{1,2}	 ⁶ AB is not a square matrix AND A general statement about square matrices 	1
Not	es:		I		
1. A	a gener	ral sta	tement about square matrices co	uld take the following form:	
	\triangleright	Only s	square matrices have an inverse		
	Only square matrices have a determinant				
	\triangleright	Only s	square matrices have an identity o	or unit matrix	
2. \	Vhere	the ar	nswer contains incorrect information	on (before, between or after correct informa	tion),
•	⁶ is no	t avail	lable.		
Con	nmonly	/ Obse	erved Responses:		
A. A	Accepta	able e	xplanations:		
، 2 ،	'Since quare 'You ca	an ide matriz an only	x". y find an inverse if you can find a	defined for square matrices". e matrices an inverse cannot be found. <i>AB</i> is determinant. Only 2×2 or 3×3 matrices hav cannot find a determinant so it has no inverse	ve a
B. I	nsuffic	ient/l	Jnacceptable explanations		
	' <i>AB</i> is 'It's no <i>meanil</i> 'It's no	not a ot a sq ng of s ot a 2s		nclear) minant cannot be found"	is 0".

Q	uestic	on	Generic scheme	Illustrative scheme	Max mark
3.	(a)		• ¹ state why function is even ^{1,2,3,4,5,6}	• ¹ graph is symmetrical about the <i>y</i> -axis \therefore even OR $f(-x) = (-x)^2 - a^2 = x^2 - a^2 = f(x) \therefore$ even	1
Note		I	L		
			t use of the word 'reflecte		
	•	•	-	the y -axis', 'symmetrical around the y -axis' etc.	
	-			cit mention of the y-axis or the line $x = 0$ must be n	nade.
4. ● ¹	is not	t avail	able for only stating ' $f(-$	$-x) = f(x) \therefore$ even' or ' $f(-a) = f(a) \therefore$ even'.	
5. ● ¹	is not	t avail	able for ' $f(-x) = -x^2 - a$	$x^{2} = x^{2} - a^{2} = f(x)$: even'.	
6. W	/here	the an	nswer contains incorrect ir	nformation (before, between or after correct information	ation),
• ¹	is not	t avail	able.		
Com	monly	v Obse	erved Responses:		
	•				
	(b)		• ² sketch graph ^{1,2,3,4}	-a 0 a x	1
sy 2. D 3. G 4. A	he (loo /mmet o not raph r candi	try. award nust n date r	• ² if the x intercepts are not be 'smooth' at x inter		
			······		

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
4.	(a)	 ¹ complete algebraic division and express in required form 	•1 $3 + \frac{4x + 19}{x^2 - x - 12}$	1		
Note	es:					
Com	monly O	oserved Responses:				
	(b)	• ² state expression 1	$\bullet^2 \frac{A}{x+3} + \frac{B}{x-4}$	3		
		• ³ form linear equation and obtain one constant	• ³ $4x+19 = B(x+3)+A(x-4)$ B=5 or A=-1			
		• ⁴ obtain final constant and state full expression ²	• $3 - \frac{1}{x+3} + \frac{5}{x-4}$			
Note	-			•		
1. W	/here a c	andidate incorrectly factorises, $ullet^2$ is not avail	able but \bullet^3 and \bullet^4 may still be aware	ded,		
in	including the situations illustrated in the Commonly Observed Responses.					
2. D	2. Do not accept $3 + -\frac{1}{x+3} + \frac{5}{x-4}$ at • ⁴ . Accept $3 + \frac{-1}{x+3} + \frac{5}{x-4}$.					

Question	Generic scheme		Illustrative scheme	Max mark
Commonly Obser	ved Responses:			
1. $3 + \frac{4x + 19}{x^2 - x - 12}$ 4x + 19 = A(x)	$\frac{A}{x} = \frac{A}{x+3} + \frac{B}{x-4}$ $(x-4) + B(x+3)$	Award • ²	2	
A = -1 or B	, , , ,	Award •	3	
	inal answer of $3 - \frac{1}{x+3} + \frac{5}{x-4}$	Award •		
2. $3 + \frac{4x + 19}{x^2 - x - 12}$		Award • ²	2	
× ×	(x-4)+B(x+3)		,	
A = -1 or $B =$		Award • ³		
leading to a f	inal answer of $-\frac{1}{x+3} + \frac{5}{x-4}$	Do not a	ward • ⁴	
3. $\frac{4x+19}{x^2-x-12} = \frac{1}{2}$	$\frac{A}{x+3} + \frac{Bx+C}{x-4}$	Award • ²	2	
A = -1 or $B =$		Award •	3	
leading to 3+	$-\frac{5}{x-4}-\frac{1}{x+3}$	Award ∙'	⁴ (Award 2/3 if $B \neq 0$)	
4. $\frac{3x^2 + x - 17}{x^2 - x - 12} =$		Do not a	ward • ²	
$3x^2 + x - 17 =$ A = -1 or B =	A(x-4)+B(x+3) = 5	Award • ³	³ but \bullet^4 is not available	
5. $\frac{3x^2 + x - 17}{x^2 - x - 12} =$	$=\frac{A}{x+3}+\frac{Bx+C}{x-4}$	Do not a	ward • ²	
	A(x-4)+(Bx+C)(x+3) = 3 or $C = -7$	Award • ³	3 but \bullet^{4} is not available	
6. $\frac{3x^2 + x - 17}{x^2 - x - 12} =$	$=\frac{A}{x+3}+\frac{Bx+C}{x-4}$			
	A(x-4)+(Bx+C)(x+3) = 3 or $C = -7$	Award • ²	2	
$\frac{3x-7}{x-4} = 3 + \frac{3}{x}$	$\frac{5}{x-4}$ leading to $3 - \frac{1}{x+3} + \frac{5}{x-4}$	Award •	3 and \bullet^{4}	

QuestionGeneric schemeIllustrative schemeMax
mark5.(a)* 1 find
$$\frac{dx}{dt}$$
* $\frac{2}{2t+7}$ 25.(a)* 1 find $\frac{dx}{dt}$ * $\frac{2}{2t+7}$ 27.* 2t+7t* 2t+7t* 2t+7tNotes:1. For *2 do not accept $\frac{t}{2t+7}$ $\frac{1}{2t+7}$ Commonly Observed Responses:Candidates who express y explicitly as a function of x :*' $y = \frac{1}{4}(e^t-7)^2$ * $\frac{dy}{dx} = \frac{1}{2}(e^t-7)e^t$ *' $\frac{dy}{dx} = \frac{1}{2}(e^t-7)e^t$ * $\frac{dy}{dx} = \frac{1}{2}(e^t-7)e^t$ (b)* $\frac{1}{4} (a^2y^2)^{-1/2}$ * $\frac{1}{2} (2t+7)(4t+7)$ Notes:* $\frac{1}{2} (2t+7)(4t+7)$ *1. * and * are not available to candidates who only differentiate $\frac{dy}{dx}$ w.r.t. t . Evidence of
multiplication or division by a function of t - other than $\ln(2t+7)$ or t^2 - must be present.2. At *, accept $\frac{1}{2}(8t^2+42t+49)$.Commonly Observed Responses:1. Candidates who express y explicitly as a function of x . $\frac{1}{2}(e^t-7)e^t + \frac{1}{2}e^t(e^t)$ Award *Xard *2. Candidates who take a formula approach $\frac{2}{2t+7}^{-1}^{-1}$ or $\frac{2}{2t+7}^{-1}^{-1}$ or $\frac{2}{2t+7}^{-1}^{-1}$ Award *

Question	Generic scheme	Illustrative scheme	Max mark
6.	• ¹ evidence of relationship	• 1 $\frac{dV}{dr} = 4\pi r^2$ AND $\frac{dV}{dt} = \frac{dV}{dr} \times \frac{dr}{dt}$ OR $\frac{dr}{dt} = \frac{dV}{dt} \times \frac{dr}{dV}$	3
	• ² substitute ²	• ² -60 = $4\pi(3)^2 \frac{dr}{dt}$ OR $\frac{dr}{dt} = \frac{-60}{4\pi(3)^2}$ • ³ $-\frac{5}{3\pi}$ cms ⁻¹	
	• ³ evaluate ^{1,2}	$\bullet^3 -\frac{5}{3\pi} \text{cms}^{-1}$	
Notes:	e required. Accept decimal equivalent to a		-ms ⁻¹)

2. \bullet^2 may be implied at \bullet^3 .

Commonly Observed Responses:

A. Candidate attaches units to an exact value but omits them from a final answer (correctly rounded or otherwise).

 $-\frac{5}{3\pi} \text{ cms}^{-1} \qquad \text{Award } \bullet^3$ = -0.5

B. Candidate attaches units to an incorrect decimal approximation and not to the exact value (or appropriately rounded decimal approximation).

$$-\frac{5}{3\pi} \text{ or } -0.53$$
$$= -0.5 \text{ cms}^{-1} \qquad \text{Do not award } \bullet^3$$

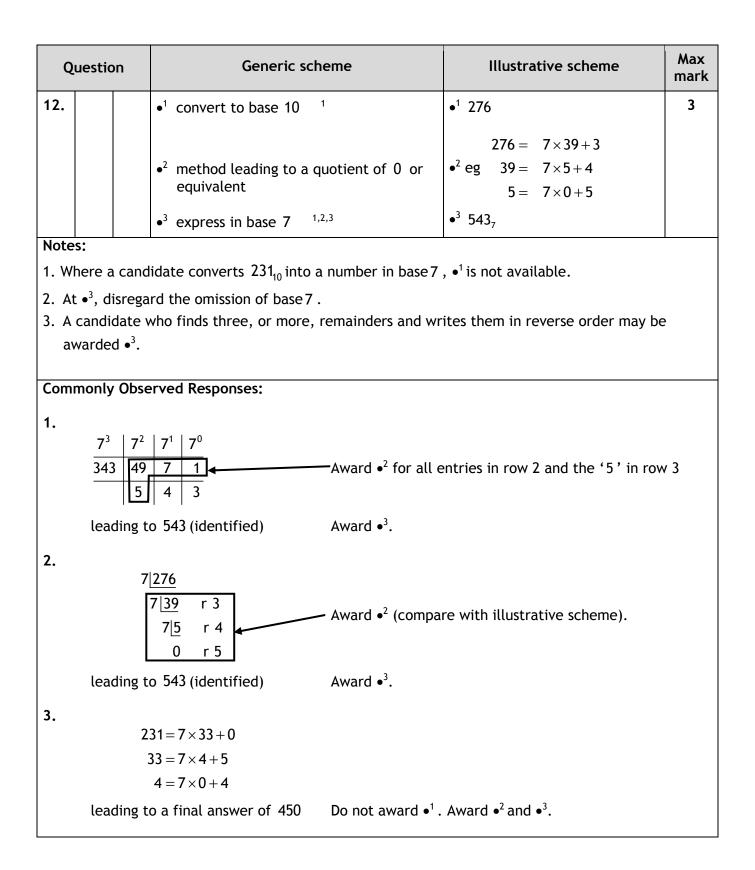
Questio	n	Generic scheme	Illustrative scheme	Max mark			
7. (a)		• ¹ find expression ^{1,2}	• $3n^2 + 16n$	1			
Notes:				I			
1. At ● ¹ acc	ept 6	$\times \frac{n(n+1)}{2} + 13 \times n$.					
2. At • ¹ acc	2. At • ¹ accept $\frac{1}{2}n[38+6(n-1)]$ obtained via an arithmetic series.						
Commonly	Obse	rved Responses:					
(b)		• ² substitute 20 and evidence of subtraction from this term ^{1,2}	• ² $(3 \times 20^2 + 16 \times 20)$	2			
		• ³ substitute for p and find expression ³	• ³ 1520 – $3p^2$ – 16 p				
Notes:							
1. Where a	a cand	idate produces further incorrect si	mplification, subsequent to $ullet^1$ being away	r ded, ● ²			
is not av	vailab	le.					
2. Award •	2 for	$\sum_{1}^{20} (6r+13) - \sum_{1}^{p} (6r+13) $ only where	the substitution is not carried out. Disre	egard			
errors ir	n sigm	a notation provided a candidate p	oduces an answer consistent with their r	esponse			
to (a).	-			•			
3. Do not a	3. Do not award \bullet^3 for incorrect working subsequent to a correct answer.						
Commonly	Commonly Observed Responses:						
A. 6×	A. $6 \times \frac{n(n+1)}{2} + 13$ incorrect expression from (a)						
leading to:							
(3×	$(3 \times 20^2 + 3 \times 20 + 13) - \dots$ Award \bullet^2						
120	60-3	$p^2 - 3p$ Award \bullet^3					

Q	uestion	Generic scheme	Illustrative scheme	Max mark		
8.		• ¹ solve auxiliary equation	• $m = -4, -7$	5		
		\bullet^2 state general solution ¹	$\bullet^2 y = Ae^{-4x} + Be^{-7x}$			
		• ³ differentiate ²	• ³ $\frac{dy}{dx} = -4Ae^{-4x} - 7Be^{-7x}$ stated or implied at • ⁴			
		• ⁴ form equations and solve for a constant	• 4 A = 3 or B = -3			
		 ⁵ find second constant and state particular solution ³ 	• $y = 3e^{-4x} - 3e^{-7x}$			
Note	s:		•	1		
1. Do	o not withho	old \bullet^2 for the omission of ' $y = $ '.				
2. Do	2. Do not withhold \bullet^3 for the omission of ' $\frac{dy}{dx} =$ '.					
3. To	3. To award \bullet^5 , ' $y =$ ' must be present.					
Com	Commonly Observed Responses:					

Questior	n	Generic scheme	Illustrative scheme	Max mark		
9. (a)	•	¹ state general term ^{1,2,3}	• $\binom{7}{r} (2x^2)^{7-r} \left(\frac{-d}{x^3}\right)^r$	3		
	•	² simplify powers of x or coefficients	• ² x^{14-5r} or $2^{7-r} (-d)^r$			
	•	 ³ state simplified general term (complete simplification) ^{2,4,5} 	$\bullet^{3} \binom{7}{r} 2^{7-r} \left(-d\right)^{r} x^{14-5r}$			
Notes:			_			
1. Candidat	tes may	γ also start with a general term of $\Bigg($	$\binom{7}{r} (2x^2)^r \left(\frac{-d}{x^3}\right)^{7-r}$ to obtain a simplified §	general		
term of	$\binom{7}{r}$ 2 ^r ($(-d)^{7-r} x^{-21+5r}$.				
general f	term is	identifiable in (b).	on, \bullet^1 , \bullet^2 and \bullet^3 are not available unless	the		
3. Candidat	es who	write down $\binom{7}{r} 2^{7-r} \left(-d\right)^r x^{14-5r}$ wit	h no working receive full marks.			
4. • ³ is unav	vailable	to candidates who, in (a), produce	further incorrect simplification subseque	ent to		
a correct	t answe	$\operatorname{er}\operatorname{eg}\left(-2d\right)^{7-2r}.$				
		l x ^{14–5} r do not appear within a single red Responses:	e term, • ³ is not available			
1. General	term h	nas not been isolated. 2. Ge	neral term has been isolated.			
$\sum_{r=0}^{7} \left($	$\binom{7}{r}$ (2 x^2	$\left(\frac{-d}{x^3}\right)^r$	$\sum_{r=0}^{7} \binom{7}{r} \left(2x^2\right)^{7-r} \left(\frac{-d}{x^3}\right)^r$			
$=$ $\sum_{r=0}^{7} \left($	$\binom{7}{r} 2^{7-r}$	$(-d)^r x^{14-5r} =$	$\binom{7}{r} 2^{7-r} \left(-d\right)^r x^{14-5r}$			
Do not a	ward •		regard the incorrect use of the final equal. Award \bullet^1 , \bullet^2 and \bullet^3 .	als		
3. Binomia	l expre	ession has been equated to genera	l term.			
$\left(2x^2-\frac{a}{x}\right)$	$\left(\frac{d}{z^3}\right)^7$	$= \binom{7}{r} \left(2x^2\right)^{7-r} \left(\frac{-d}{x^3}\right)^r$				
Disregare	d the ir	ncorrect use of the equals sign. Awa	rd ∙¹.			
4. Negative	e sign o	omitted.				
$\binom{7}{r}(2x^2)$	$\binom{7}{r} (2x^2)^{7-r} \left(\frac{d}{x^3}\right)^r$ Do not award \bullet^1 but \bullet^2 and \bullet^3 are still available.					
5. Brackets	s omitt	ed around $-d$				
$\binom{7}{r} 2^{7-r}$	$-d^{r}x^{14}$	$-5r$ Do not award \bullet^3 .				
		page 17				

Question		uestion Generic scheme		Illustrative scheme	Max mark	
9.	(b)		• ⁴ obtain value of $r^{-1,2}$	• ⁴ $r=3$	2	
			• ⁵ find value of d^{-3}	• ⁵ $d = 5$		
Note	s:					
1. Th	ne alte	ernati	ve expansion leads to $r = 4$.			
	2. Where a candidate writes out a full expansion • ⁴ may be awarded only where this is complete and correct at least as far as the required term (in either direction).					
	 3. Where a candidate obtains an incorrect binomial expansion, •⁵ will be available only where the evaluation of a root is required. 					

Commonly Observed Responses:


Binomial expansion:

 $128x^{14} - 448dx^9 + 672d^2x^4 - 560d^3x^{-1} + 280d^4x^{-6} - 84d^5x^{-11} + 14d^6x^{-16} - d^7x^{-21}$

Question		n	Generic scheme	Illustrative scheme	Max mark			
10.	(a)		• ¹ apply chain or product rule	• $2y\frac{dy}{dx}$ or $y + x\frac{dy}{dx}$	3			
			• ² complete differentiation	• ² $2x + 2y \frac{dy}{dx} = y + x \frac{dy}{dx}$				
			• ³ express $\frac{dy}{dx}$ in terms of x and y ⁻¹	• ³ $\frac{dy}{dx} = \frac{y-2x}{2y-x}$				
Note	s:							
			e only where $\frac{dy}{dx}$ appears more than once, af	ter the candidate has completed	their			
	fferen							
Com	monly	ODSE	erved Responses:					
	(b)		• ⁴ equate denominator of $\frac{dy}{dx}$ to zero ¹ • ⁵ calculate values of k ^{1,2}	• $4 2y - x = 0$	2			
			• ⁵ calculate values of $k^{1,2}$	• ⁵ $k = \pm 4$				
Note	s:							
1. At	t • ⁵ , ao	ccept	$x = \pm 4$.					
2. W	here a	a canc	lidate equates the numerator to zero, $ullet^4$ and	\bullet^5 are not available.				
			erved Responses:					
			•					
Inter	sectio	on me	thod.					
	$y^2 - ky + (k^2 - 12) = 0$ Substitute for x and express in general form							
•4	(-k	$(x)^{2} - 4$	$(k^2 - 12) = 0$ Communicate condition	$k^2 - 12 = 0$ Communicate condition for equal roots				
• ⁵	<i>k</i> =	±4						

Question		on	Generic scheme	Illustrative scheme	Max mark
11.	(a)		• ¹ state counterexample ^{1,2}	• ¹ eg when $n = 4$, $n^2 + n + 1 = 21$ which is not prime	1
Note	s:				
is 2. W	not p /here	rime.	nswer contains incorrect information (b	te $n^2 + n + 1$ and communicate that this efore, between or after correct inform	
			erved Responses:		
4 ² +	4+1=	=21,	which is not prime. Award • ¹ been demonstrated)		
	(b)	(i)	• ² write down contrapositive statement ^{1,2,8}	• ² If <i>n</i> is even then $n^2 - 2n + 7$ is odd	1
		(ii)	• ³ write down appropriate form for n AND substitute ^{1,3,4,5,9}	• ³ $n = 2k, k \in \mathbb{N}$ and $(2k)^2 - 2(2k) + 7$	3
			• ⁴ show $n^2 - 2n + 7$ is odd ^{1,6,7,9}	• ⁴ eg 2($2k^2 - 2k + 3$)+1 which is odd since $2k^2 - 2k + 3 \in \mathbb{N}$	
			● ⁵ communicate ^{1,8,9}	 ⁵ contrapositive statement is true AND therefore original statement is true 	
Note					
1. M be 2. A	arks • egins ' ward •	"If <i>n</i> ² • ² for '	• ⁴ and • ⁵ are not available to a candida -2n+7". If n is not odd then n^2-2n+7 is not $k \in \mathbb{Z}^+$ but do not accept $k \in \mathbb{Z}$.	te whose statement of the contrapositi even'.	ve
4. At	t • ³ do	not a	accept $n = 2n$.		
5. At	t ● ³ th	e forn	n of n must be consistent with the can	didate's response to b(i).	
6. D	o not	withh	old \bullet^4 for the omission of $2k^2 - 2k + 3 \in$	N.	
	t•⁴ ac dd.	cept a	any valid expression of the form $ab+c$, where a is even, b is an integer and	c is
			e only where a candidate's conclusion s al statement.	tates that the contrapositive is true and	d links
9. W	here	a cano	didate's response mentions contradiction	on, \bullet^3 , \bullet^4 and \bullet^5 are not available.	

-	estion	Generic scheme		Illustrative scheme	Max mark
Comm	nonly Obse	erved Responses:			
		when considering any of the responsion k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k is a whole k		below. Where a candidate uses $n = 2k$ - ber".	⊦1
Α.	If n is or $n = 2k - 2k$	dd then $n^2 - 2n + 7$ is even 1, $k \in \mathbb{N}$	Do n	ot award \bullet^2	
	$(2k-1)^2$	-2(2k-1)+7	Awa	rd • ³	
	$2(2k^2-4)$	4k+5) which is even	Awa	rd ∙ ⁴	
		rapositive statement is true so nal statement is true.	Awa	rd ● ⁵	
В.	If <i>n</i> is or $n = 2k - 2k$	dd then $n^2 - 2n + 7$ is odd 1, $k \in \mathbb{N}$	Do n	ot award • ²	
	$(2k-1)^2$	-2(2k-1)+7	Awa	rd ∙ ³	
	$2(2k^2-4)$	4k+5) which is not odd	Do n	ot award \bullet^4 . \bullet^5 is not available.	
c.	If n is ev n = 2k,	ven then $n^2 - 2n + 7$ is even $k \in \mathbb{N}$	Do n	ot award \bullet^2	
	$(2k)^2 - 2$	(2k)+7	Awa	rd • ³	
	$2(2k^2-2)$	(k+3)+1 which is odd	Do n	ot award $ullet^4$. $ullet^5$ is not available.	

Question		Generic scheme	Illustrative scheme	Max mark			
13.		• ¹ separate variables and write integral equation ¹	• ¹ $\int \frac{1}{12 - V} dV = \int k dt$	5			
		• ² integrate LHS	• ² $-\ln(12-V)$				
		\bullet^3 integrate RHS ²	• ³ $kt + c$				
		• ⁴ evaluate constant of integration ²	• ⁴ -ln10				
		• ⁵ express V in terms of k and t 2,3,4	• ⁵ $V = 12 - 10e^{-kt}$				
Note		Laluboro (JV and (J, do not array	·				
		$\mathbf{I} \bullet^1$ where $\int \dots dV$ and $\int \dots dt$ do not appear.					
ur	navailable.	es who omit the constant of integration, $ullet^3$ m					
3. ● ⁵	is unavaila	ble to candidates who omit the negative sigr	n at •².				
4. At	• ⁵ , accept	$V = 12 - \frac{10}{e^{kt}}$ or $V = \frac{12e^{kt} - 10}{e^{kt}}$ but do not acc	cept the appearance of eg $e^{-kt+\ln 10}$	in the			
	nal answer.						
Com	monly Obse	erved Responses:					
Using	g integratir	ng factor.					
$\frac{dV}{dt}$ +	<i>⊦ kV =</i> 12 <i>k</i>						
IF = 6	e^{kt}	Award \bullet^1					
$\frac{d}{dt}(V$	Ve^{kt} = 12 ke^{kt}	ka					
Ve^{kt} =	$Ve^{kt} = \int 12ke^{kt}dt$ Award \bullet^2						
Ve^{kt} =	$=$ 12 e^{kt} + c	Award \bullet^3					
c = -	-10	Award \bullet^4					
V = 1	$ 2-10e^{-kt} $	Award \bullet^5					

Q	uestion	Generic scheme	Illustrative scheme	Max mark
14.		• ¹ show true when $n = 1^{-1}$	• ¹ when $n = 1$ LHS = 1! ×1=1 RHS = $(1+1)!-1=1$ so result is true when $n = 1$.	5
		• ² assume (statement) true for n = k AND consider whether (statement) true for $n = k + 1^{-2}$	• ² suitable statement AND $\sum_{r=1}^{k} r!r = (k+1)!-1$ AND $\sum_{r=1}^{k+1} r!r = \dots$	
		• ³ state sum to $(k+1)$ terms using inductive hypothesis ⁵	• ³ $(k+1)!-1+(k+1)!(k+1)$	
		• ⁴ extract $(k+1)!$ as common factor _{3,5}	• ⁴ $(k+1)!(k+2)-1$	
		• ⁵ express sum explicitly in terms of $(k+1)$ or achieve stated aim/goal AND communicate ^{4,5,6}	• ⁵ $((k+1)+1)!-1$ AND If true for $n = k$ then true for n = k + 1. Also shown true for n = 1 therefore, by induction, true for all positive integers n .	

Question	Generic scheme	Illustrative scheme	Max mark				
Notes:	Notes:						
must demons Accept 2!-1	 "RHS = 1, LHS = 1" and/or "True for n=1" are insufficient for the award of •¹. A candidate must demonstrate evidence of substitution into both expressions. Accept 2!-1 for RHS. Where a candidate does not independently evaluate the LHS and RHS, •¹ may still be awarded. 						
-	 2. For ●² acceptable phrases for n = k contain: > "If true for"; "Suppose true for"; "Assume true for". 						
For • ² insuffic	cient phrases for $n = k$ contain:						
> "Cons	ider $n = k$ ", "assume $n = k$ ", "let n	=k ".					
	icient phrase, do not award \bullet^2 unless an e conclusion at \bullet^5 .	acceptable statement subsequently ap	opears				
For • ² unacce	eptable phrases for $n = k$ contain:						
➤ "True	for $n = k$ ", "Consider true for $n = k$ "						
For an unacce	eptable phrase, do not award \bullet^2 but \bullet^5 r	nay still be available.					
	eptable phrases for $n = k + 1$ contain:						
 "Cons workii 	ider true for $n = k + 1$ ", "true for $n = k$	+1"; " $\sum_{r=1}^{k+1} r! r = (k+2)! - 1$ " (with not	further				
	(k+1)!(1+k+1)-1.						
4. ● ⁵ is unavailat	ole to candidates who have not been av	varded •4.					
	5. Full marks are available to candidates who state an aim/goal earlier in the proof and who subsequently achieve the stated aim/goal, provided $((k+1)+1)!-1$ appears at some point.						
acceptable re	e required algebra and statement of the esponse for \bullet^5 is:						
	r $n = k + 1$, but since true for $n = 1$, the second sec	en true for all n " or equivalent.					
Commonly Obse	erved Responses:						

Question		n Generic scheme	Illustrative scheme	Max mark
15.	(a)	• ¹ verify that the line lies on one plane ¹	• ¹ eg $2(2\lambda + 3) - 3(\lambda - 1) - \lambda = 9$	2
		• ² verify for other plane and state conclusion ²	• ² eg $2\lambda+3+\lambda-1-3\lambda=2$; therefore the line lies on both planes	
		OR	OR	
		• ¹ substitute parameter for x, y or z into both equations	• ¹ eg $2x-3y-\lambda=9$ $x+y-3\lambda=2$	
		• ² solve simultaneous equations leading to parametric equations ¹	• ² $x = 2\lambda + 3; y = \lambda - 1; z = \lambda$	
		OR	OR	
		• ¹ use vector product to find direction vector OR substitute eg $z = 0$ to find common point	• ¹ eg 10 i +5 j +5 k OR $(3, -1, 0)$	
		• ² find parametric equations	• ² (3, -1, 0) OR 10 i +5 j +5 k AND $x = 2\lambda + 3; y = \lambda - 1; z = \lambda$	

2. Where a candidate elects to substitute the parametric equations for L_1 into the equations of π_1 and π_2 and concludes that " L_1 intersects π_1 and π_2 ", do not award \bullet^2 .

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark		
15.	(b)		• ³ identify vectors ¹	$\bullet^{3} \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}$	3		
			• ⁴ start to calculate angle ^{2,3}	• ⁴ $\cos\theta = \left(\frac{3}{\sqrt{6}\sqrt{29}}\right)$			
			• ⁵ calculate complement ^{2,4}	 ⁵ any answer which rounds to 0.229 or 13° 			
Note	s:						
1. At	:• ³ , ao	cept	the appearance of the vectors within an atten	npt to find a scalar or vector pro	duct.		
2. Fo	2. For a candidate who uses $\sin^{-1}\left(\frac{3}{\sqrt{6}\sqrt{29}}\right)$ as a means of obtaining the complement directly (with						
no further processing) \bullet^4 and \bullet^5 may be awarded.							
3. Fo	3. For a candidate who finds $\sin^{-1}\left(\frac{3}{\sqrt{6\sqrt{29}}}\right)$ and proceeds to find its complement, \bullet^4 is unavailable.						

4. Do not award \bullet^5 where the degree symbol has been omitted.

Commonly Observed Responses:

Use of definition of vector product:

$$\sin \theta = \frac{\sqrt{165}}{\sqrt{6}\sqrt{29}} \qquad \text{Award } \bullet^4$$

Q	Question		Generic scheme	Illustrative scheme	Max mark
15.	(C)		• ⁶ parametric equations for L_2 ²	• $x = -2\mu + 1; y = 4\mu + 3;$ $z = 3\mu - 2$	4
			• ⁷ two equations for two parameters	• ⁷ any two from $2\lambda + 3 = -2\mu + 1;$ $\lambda - 1 = 4\mu + 3; \lambda = 3\mu - 2$	
			• ⁸ solve for two possible parameters ¹	• ⁸ eg $\mu = -1; \lambda = 0$	
			 ⁹ substitute into remaining equation and state conclusion ³ 	• ⁹ eg LHS = 0 , RHS = -5 so lines do not intersect.	
Note	s:		•	•	

1. Alternative responses:

Equating x and z: $2\lambda + 3 = -2\mu + 1$ $\lambda = 3\mu - 2$ leading to $\lambda = -\frac{5}{4}, \mu = \frac{1}{4}$ LHS $= -\frac{9}{4}$, RHS = 4 Equating y and z: $\lambda - 1 = 4\mu + 3$ $\lambda = 3\mu - 2$ leading to $\lambda = -20, \mu = -6$ LHS = -37, RHS = 13

- 2. Where candidates employ the same parameter twice leading to $x = -2\lambda + 1$; $y = 4\lambda + 3$; $z = 3\lambda 2$ only \bullet^6 may be awarded.
- 3. For a final response of "0 = -5 so the lines do not intersect" do not award \bullet^9 unless the candidate subsequently communicates the inconsistency of 0 = -5.

Commonly Observed Responses: A. z=0, z=-3-2, lines do not intersect

Award •⁹

0	uestic		Generic scheme	Illustrative scheme	Max	
Question			Generic Scheme	must ative scheme	mark	
16.	(a)		 evidence of integration by parts 	• $\frac{e^{4x}}{4}(x^2-2x+1)$	5	
			• ² complete first application ¹	$\bullet^2 \dots \int (2x-2) \frac{e^{4x}}{4} dx$		
			 ³ second application of integration by parts 	• ³ $\left[\frac{e^{4x}}{16}(2x-2)-\frac{1}{8}\int e^{4x} dx\right]$		
			• ⁴ complete integration and include limits ²	• $\left[\frac{e^{4x}}{4}\left(x^2-2x+1\right)\right]_{0}^{1}-\left[\frac{1}{16}\left(2x-2\right)e^{4x}-\frac{1}{32}e^{4x}\right]_{0}^{1}$		
			• ⁵ evaluate ^{2,3}	• $\frac{1}{32}(e^4-13)$		
2. Ev 3. Do	/idenc	e of l award		$l \bullet^5$. nation, unless preceded by the exact value.		
Com	monly	v Obse	erved Responses:			
	(b)		• ⁶ correct form of integral ^{1,2,3}	$\bullet^6 \pi \int_0^1 y^2 dx$	3	
			• ⁷ find expression to integrate ⁴	• ⁷ $16\pi \int_0^1 (x^2 - 2x + 1) e^{4x} dx$		
			• ⁸ integrate and evaluate ^{5,6}	• ⁸ $\frac{\pi}{2}(e^4-13)$		
Note	-					
			I of \bullet^6 , limits must appear able unless " dx " appears			
			$\pi \int_{0}^{1} \left[f(x) \right]^{2} dx.$			
	/idenc		the award of \bullet^7 must inclu	ude all of the following:		
	•	$(x^2 -$	$(x+1)$ or $(x-1)^2$			
		e^{4x}	ict value appears at \bullet^8 .			
				nation unloss:		
э. Di	 Do not award •⁸ for a decimal approximation unless: preceded by an exact value OR 					
	-	nas be	en withheld for the same	reason AND there is sufficient evidence for \bullet^7 .		
6. Do	o not a	award	\bullet^8 for a negative volume	(including eg $\frac{\pi}{2}(e^2-13)$).		

Commonly Observed Responses:

Question		on	Generic scheme	Illustrative scheme	Max mark		
17.	(a)		• ¹ substitute and calculate one ratio ^{1,2,3,4}	• $\frac{-21}{63} = -\frac{1}{3}$ or $\frac{7}{-21} = -\frac{1}{3}$	2		
			• ² calculate second ratio and state common ratio ^{1,5}	• ² $\frac{7}{-21} = -\frac{1}{3}$ or $\frac{-21}{63} = -\frac{1}{3}$ So $r = -\frac{1}{3}$			
Note	s:						
1. W	here a	a cand	idate calculates the first three terms only, $ullet^1$ a	nd \bullet^2 are not available.			
2. W	here a	a cand	idate calculates the first three terms and simpl	ly states $r = -\frac{1}{2}$, award \bullet^1 .			
•1 4. W th	 Where a candidate finds the first three terms followed by eg "r = -21/7, so r = -1/3", do not award •¹. Where a candidate calculates the first three terms and then substitutes one pair of numbers into the nth term formula to calculate r, award •¹ only. For the award of •², there must be evidence that the candidate has considered a second pair of . 						
		/ Obse	erved Responses:				
Α.	Firs	st thre	ee terms found followed by:				
	$\frac{-21}{63} = -\frac{1}{3}$ Award • ¹						
	-2		$\left(\frac{1}{3}\right) = 7$ so $r = -\frac{1}{3}$ Award \bullet^2				
	(b)	(i)	• ³ state condition ^{1,2}	• ³ $\left -\frac{1}{3}\right < 1$	1		
th	t ●³, – ne case	e whe	ay be replaced by a letter consistent with the ca re a candidate obtains a value in (a) outside the	e open interval $(-1,1)$, $ullet^3$ will be			
			y where they also acknowledge that there is no y for a strict inequality, whether expressed alge	-			
Com	Commonly Observed Responses:						

Question		on	Generic scheme		Illustrative scheme	Max mark
17.	(b)	(ii)	• ⁴ begin to substitute ^{1,2,3}		• ⁴ ${1-\left(-\frac{1}{3}\right)}$ • ⁵ $\frac{189}{4}$ or 47.25	2
			• ⁵ calculate sum ^{1,2,3}		• ⁵ $\frac{189}{4}$ or $47 \cdot 25$	
21	here a		didate calculates a common ratio outwi			
			didate writes $S_n = \frac{63\left(1 - \left(-\frac{1}{3}\right)^n\right)}{1 - \left(-\frac{1}{3}\right)}$, • ⁴ v	vill be av	vailable only where a candidate	states
tł	nat as	$n \rightarrow \infty$	$\infty \left(-\frac{1}{3}\right)^n \rightarrow 0$. • ⁵ is still available.			
			answer with no working, \bullet^4 and \bullet^5 are r	not avail	able.	
Com	monly	v Obse	erved Responses:			
17.	(c)	(i)	• ⁶ equate ratios	• ⁶ $\frac{-2x}{5x}$	$\frac{x+1}{x+8} = \frac{x-4}{-2x+1}$	2
			• ⁷ perform algebraic manipulation leading to formation of quadratic equation ¹	$\bullet^7 x^2 -$	-8x - 33 = 0	
Note		o for	the award of \bullet^7 must include the expan		the products of two pairs of bra	ockots
			erved Responses:			
		(ii)	• ⁸ calculate second value of x	• ⁸ $x =$	-3	2
			• ⁹ find first three terms	• ⁸ $x =$ • ⁹ -7,	7, -7	
Note	s:			1		
Com	monly	v Obse	erved Responses:			
		(iii)	• ¹⁰ state S_{2n} and justify ^{1,2}		nce eg $2n$ is even and so pairs erms cancel each other out	1
tŀ	or a de ne fact	t that	tive justification, reference must be m 2n is even (and the consequence there $S_{2n} = 0$ since $\frac{-7(1-(-1)^{2n})}{1-(-1)} = 0$.		er to an even number of terms	or to
Com	monly	0bse	erved Responses:	<u></u>		
	page 31					

Question		on	Generic scheme	Illustrative scheme	Max mark		
18.	(a)	(i)	• ¹ write in Cartesian form	• ¹ $a-a\sqrt{3}i$	1		
Note	s:			1	1		
Com	monly	/ Obse	erved Responses:				
		(ii)	• ² calculate modulus ^{1,6}	• ² 2 <i>a</i>	3		
			• ³ calculate argument ^{2,3,4}	$\bullet^3 -\frac{\pi}{3}$			
			• ⁴ write in polar form ^{1,4,5,6}	• ⁴ $2a\left(\cos\left(-\frac{\pi}{3}\right)+i\sin\left(-\frac{\pi}{3}\right)\right)$			
1. At 2. Fo	Notes: 1. At \bullet^2 accept $\sqrt{4a^2}$, but it must be simplified at \bullet^4 . 2. For \bullet^3 , accept any answer of the form $-\frac{\pi}{3} + 2k\pi$, $k \in \mathbb{Z}$.						
	 Accept an argument expressed in degrees, with or without a degree symbol. Evidence for •³ may not appear until b(i). In this case, •⁴ is not available. 						
5. At	5. At •4, accept $w = 2a\left(\cos\frac{\pi}{3} - i\sin\frac{\pi}{3}\right)$.						
	6. Do not withhold \bullet^4 for an unsimplified modulus if \bullet^2 has already been withheld for the same reason.						
Com	Commonly Observed Responses:						

Question		on	Generic scheme	Illustrative scheme	Max mark
18.	(b)	(i)	• ⁵ begin process ¹	• $z_1 = 8^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right) \right)^{\frac{1}{3}}$ stated or implied by • ⁶	4
				• $z_1 = 8^{\frac{1}{3}} \left(\cos\left(-\frac{\pi}{9}\right) + i\sin\left(-\frac{\pi}{9}\right) \right)$	
			• ⁷ state value of k ^{1,2} • ⁸ state value of m ^{1,2}	• ⁷ $k = 2$ • ⁸ $m = -9$	

Notes:

- 1. Where the operations carried out on the modulus and argument are incompatible eg cubing the modulus and dividing the argument by three, do not award \bullet^5 or \bullet^6 ; however, \bullet^7 and \bullet^8 are still available.
- 2. Where a candidate obtains a non-integer value for k or m, \bullet^7 or \bullet^8 is not available.

Comn	nonly Observed Responses:	
Α.	$z_1^3 = k^3 \left(\cos \frac{\pi}{m} + i \sin \frac{\pi}{m} \right)^3$	Award ● ⁵
	stated or implied by $ullet^6$	
	$z_1^3 = k^3 \left(\cos \frac{3\pi}{m} + i \sin \frac{3\pi}{m} \right)$	Award • ⁶
В.	$w^3 = 8^3 \left(\cos\left(-\frac{\pi}{3}\right) + i \sin\left(-\frac{\pi}{3}\right) \right)^3$	Do not award \bullet^5
	$w^3 = 8^3 \left(\cos\left(-\pi\right) + i \sin\left(-\pi\right) \right)$	Award ● ⁶
	k = 512	Award \bullet^7
	m = -1	Award ● ⁸
C.	Answers without working:	
	1. $k = 2$ and $m = -9$	Award full marks
	2. $k=2$ and $m \neq -9$	Award \bullet^7 only
	3. $k \neq 2$ and $m = -9$	Award • ⁸ only

Question		on	Generic scheme	Illustrative scheme	Max mark	
18.	(b)	(ii)	• ⁹ begin to add or subtract $\frac{2\pi}{3}$ to or from argument of z_1 • ¹⁰ state roots	• ⁹ $\pm \frac{2\pi}{3}$ stated or implied by • ¹⁰ • ¹⁰ $z_2 = 2\left(\cos\frac{5\pi}{9} + i\sin\frac{5\pi}{9}\right)$ $z_3 = 2\left(\cos\left(-\frac{7\pi}{9}\right) + i\sin\left(-\frac{7\pi}{9}\right)\right)$	2	
 TI W re •1 	 Notes: 1. The addition of other multiples of 2π/3, leading to other forms of roots, is acceptable. 2. Where a candidate finds one further root, consistent with adding or subtracting 2π/3 to their response to b(i) and without working, •⁹ may be awarded. 3. •¹⁰ is available only where a candidate produces exactly two roots, with consistent spacing, 					
	distinct from one another and also from z ₁ . Commonly Observed Responses:					

[END OF MARKING INSTRUCTIONS]